Parallel Momentum and Ion Heat Transport in Stochastic Magnetic Fields

Samantha Chen, P. D., S.M. Tobias

Also: Mingyun Cao, P.D.

Ackn: W.X. Guo, Lu Wang

KITP – Plasma Applications

This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DEFG02-04ER54738.

Outline

- Why?
- Background: FGC '92 (Conventional Wisdom)

Ding et. al. '13

- 'Dual' Problem: Stochastic Field Transport in Turbulence
- The Crank
- The Physics and its Implications
- Revisiting an Assumption

Plasma Physics Ahead !!

An Observation

• BLY (1998) (layering model proto type)

$$BLY = k - \epsilon' \mod l + l_{mix}$$

$$l_{0Z}$$

$$l_{0Z} \sim \epsilon^{1/2} / N^{3/2}$$

$$l_{0Z} \qquad N^2 \sim \partial_z \rho \text{ (emergent)}$$

• Plasma Transport Barriers (BDT '90, Hinton '91 et. seq $\rightarrow \infty$)

 $\label{eq:constraint} `k-\epsilon' type models + \tau_c < \begin{cases} \tau_{c,0} & \to \text{ base state correlation time} \\ \tau_{E\times B} & \to \text{ shearing time} \end{cases}$

 $1/\tau_{E \times B} \sim V'_E$ (emergent from profiles) $0 = \frac{q}{m}\vec{E} - \frac{\nabla P_i}{nm} + \frac{q}{mc}\vec{V} \times \langle \vec{B} \rangle$

 \rightarrow Similar thinking ...

<u>Why</u> $\langle \tilde{B}^2 \rangle$ meets Heat, Momentum Transport?

Samantha: Stochastic Fields

dephase Shearing Reynolds Stress Inhibit jet production

→ Need $k_{\perp}^2 V_A D_M > 1/\tau_{c,0} \sim \omega_*$ to quench $\langle \tilde{V}_r \nabla_{\perp}^2 \tilde{\phi} \rangle$

→ $P_{crit}(\langle b^2 \rangle)$ to form barrier

→ Focus on $\langle V_{\perp} \rangle$

So what of ion heat and parallel momentum?

Why? - Cont'd

Relevance: $\begin{cases} Transitions \rightarrow contribution to \langle V_E \rangle' \\ Intrinsic Rotation \rightarrow increased spontaneous \\ rotation in H-mode \end{cases}$

 \leftrightarrow heat engine

Stochastic fields probe resilience of barrier and staircase systems

Conventional Wisdom

- Finn, Guzdar, Chernikov '92 (FGC)
 - $-n_i$, V_{\parallel} evolution in stochastic fields (motivated by rotation damping due EML)
 - Mean field eqns:

$$\partial_{t} \langle V_{\parallel} \rangle + \partial_{r} \langle \tilde{V}_{r} \tilde{V}_{\parallel} \rangle = -\frac{1}{\rho} \partial_{x} \langle \tilde{b}_{r} \tilde{P} \rangle$$

$$\uparrow$$

$$\partial_{t} \langle P \rangle + \partial_{r} \langle \tilde{V}_{r} \tilde{P} \rangle = -\rho \ c_{S}^{2} \ \partial_{r} \ \langle \tilde{b}_{r} \tilde{V}_{\parallel} \rangle$$

- QL for 'acoustic wave response'
 - → viscous relaxation time $\tau_l \sim [c_s D_M / l^2]^{-1}$

$$D_M = \sum_k |b_k|^2 \pi \, \delta(k_{\parallel})$$
, ala' RSTZ '66

Conventional Wisdom, Cont'd

• Nits

- Why bother with acoustic wave?

 $\vec{B} \cdot \nabla V_{\parallel} = 0$, $\vec{B} \cdot \nabla P = 0$ + linear response suffice

– <u>Structure</u> of fluxes ??

$$\langle \tilde{b}_r \tilde{P} \rangle = -D_M \frac{\partial}{\partial r} \langle P \rangle , \qquad \qquad \langle \tilde{b}_r \tilde{V}_{\parallel} \rangle = -D_M \frac{\partial}{\partial r} \langle V_{\parallel} \rangle$$

 \rightarrow Residual,

 \rightarrow Convection (pinch)

non-diffusive stress for $\partial_t \langle V_{\parallel} \rangle$

for: $\partial_t \langle P \rangle$

More Conventional Wisdom

$$\partial_t \langle V_{\parallel} \rangle + \partial_r \langle \tilde{V}_r \tilde{V}_{\parallel} \rangle = -\frac{c_s^2}{\rho} \partial_x \langle b_r P \rangle$$

"kinetic stress"

- W.X. Ding, et. al. PRL '13
 - Linked plasma flows in RFP to kinetic stress, via direct measurement
 - Mean flow profile tracks ∇ · (kinetic stress)

RFP = Reversed Field Pinch

Issue

- Kinetic stress of interest to transition and barrier state
- How calculate?

In QL, after FGC seek
$$\delta P \sim \tilde{b} \frac{\delta P}{\delta b} \Rightarrow \langle \tilde{b} \delta P \rangle \sim \langle \tilde{b}^2 \rangle$$

But what is in $\delta P / \delta b$?

• Observe,

Before (Samantha): Calculate Reynolds stress via vorticity response in presence

of a stochastic field

<u>Now</u>: Calculate kinetic stress $\langle \tilde{b} \delta P \rangle$ via δP in presence of turbulence

Issue, Cont'd

- Two problems \leftrightarrow 'dual'
 - Reynolds stress in $\langle \tilde{b}^2 \rangle$ background
 - Kinetic stress in $\langle \tilde{V}^2 \rangle$ background
- Points to significant departure from FGC and quasilinear theory !
- In spirit of Resonance Broadening, but juicier...
- Implicit: Statistics of $\tilde{b} \rightarrow \text{RMP}$ induced
 - $\tilde{V} \rightarrow \text{drift waves}$

independent

The Crank

- Start from $\partial_t V_{\parallel}$, $\partial_t P$ equations
- Seek $\langle \tilde{b}_r \tilde{P} \rangle$, $\langle \tilde{b}_r \tilde{V}_{\parallel} \rangle$
- Follow quasilinear approach, BUT
- Posit an ambient ensemble of drift waves, so $\langle \tilde{V}_{\perp}^2 \rangle$ specified

Assume $\langle \tilde{V}_{\perp}^2 \rangle$, $\langle \tilde{b}_r^2 \rangle$ quasi-Gaussian <u>and</u> statistically independent

• Calculate responses $\delta P = (\delta P / \delta b_r) \tilde{b}_r$ and $\delta V_{\parallel} = (\delta V_{\parallel} / \delta b_r) \tilde{b}_r$ (to close fluxes) by integration over <u>perturbed trajectories</u>, ala' Dupree

The Answer

(kinetic stress)
$$\langle \tilde{b}_r \, \delta P \rangle = -\sum_k \left| b_{r,k} \right|^2 \frac{1}{(k_\perp^2 D_T)^2 + k_\parallel^2 c_s^2} \left\{ \rho c_s^2 k_\perp^2 D_T \frac{\partial}{\partial r} \langle V_\parallel \rangle - i k_\parallel c_s^2 \frac{\partial}{\partial r} \langle P \rangle \right\}$$

$$(\text{convection}) \qquad \langle \tilde{b}_r \delta V_{\parallel} \rangle = -\sum_k \left| b_{r,k} \right|^2 \frac{1}{(k_{\perp}^2 D_T)^2 + k_{\parallel}^2 c_s^2} \left\{ c_s^2 k_{\perp}^2 D_T \frac{\partial}{\partial r} \langle P \rangle - i k_{\parallel} c_s b_{r,k} c_s \frac{\partial}{\partial r} \langle V_{\parallel} \rangle \right\}$$

$$D_T \equiv \int \langle \tilde{V}_r \tilde{V}_r \rangle dt$$

 $D \equiv 1/\tau_{\perp}^2 + k_{\parallel}^2 c_s^2$

The Physics

• Limits

 $k_{\parallel}c_s > k_{\perp}^2 D_T \rightarrow \underline{\text{weak}}$ e.s. turbulence -- narrow regime validity n.b. role of anisotropy !

 $\langle \tilde{b}_r \delta P \rangle \approx -D_M \, \partial \langle P \rangle / \partial r, \ \langle \tilde{b}_r \delta V_{\parallel} \rangle \approx -D_M \partial \langle V_{\parallel} \rangle / \partial r$

Recovers FGC, but relevance?

- $k_{\perp}^2 D_T > k_{\parallel} c_S \rightarrow \underline{\text{strong}}$ electrostatic turbulence (as for pre-transition)
 - $\langle \tilde{b}_r \delta P \rangle \approx -D_{st} \, \partial \langle V_{\parallel} \rangle / \partial r \quad , \qquad \qquad \langle \tilde{b}_r \delta V_{\parallel} \rangle \approx -D_{st} \partial \langle P \rangle / \partial r$

 \rightarrow Viscosity

 \rightarrow Thermal diffusivity

$$D_{ST} = \sum_{k} c_s^2 \left| b_{r,k} \right|^2 / k_\perp^2 D_T$$

The Physics, Cont'd

- $D_{ST} = \sum_k c_s^2 |b_{r,k}|^2 / k_{\perp}^2 D_T$ magnetic scattering with τ_{cor} set by electrostatics
- Hybrid Magnetic
 Electrostatic
- Yes, resonance broadening result, but <u>No</u> \rightarrow not "same old, same old"
 - \rightarrow <u>Structure</u> of correlator <u>changes</u> from residual stress to turbulent viscosity
- FGC <u>irrelevant</u> to any state with finite ambient electrostatic turbulence
- FGC 'correct' to link decay of rotation to diffusion, but with incorrect diffusion coeff.

The Physics, Cont'd

• How ?

 $b_{r,k} \partial_r \langle P \rangle \rightarrow$ pressure perturbation. Balance? \rightarrow if $k_{\parallel}c_S > k_{\perp}^2 D_T$, $\nabla_{\parallel} \delta P$ \rightarrow FGC \rightarrow residual stress balance perturbation \rightarrow if $k_{\parallel}c_S < k_{\perp}^2 D_T$, $k_{\perp}^2 D_T \delta V_{\parallel}$ \rightarrow turbulent viscosity balance perturbation

• Easily extended to sheared field geometry

key: W_k vs $X_S = 1 / c_s \tau_{ck} k'_{\parallel}$ (analogous to X_i) \downarrow \downarrow \downarrow $W_k > X_s \rightarrow$ weakspectral width
(space)acoustic point $W_k < X_s \rightarrow$ strong

The Physics, Cont'd

- Infrared behavior ? $D_{ST} = \sum_k c_s^2 |b_{r,k}|^2 / k_{\perp}^2 D_T$
- Not resolved by magnetic shear:
- $|b_{r,k}|^2$ likely to have low-*k* cut-off

- Merits further study...
- May force zonal flow formation \rightarrow resonance (D)

Implications / Conclusions

• Pure 'stochastic field' models of limited utility when turbulence present

Need <u>both</u> of dual analyses

 \rightarrow X in presence of stochastic field

<u>and</u>

 \rightarrow stochastic field in presence of turbulence

- In practice \rightarrow kinetic stress is turbulent viscous stress
 - → significant effect on $\langle V_{\parallel} \rangle$

Implications / Conclusions

- Stochastic field ion heat transport also significant
- For Alfvenic case:

$$k_{\parallel}V_A \sim k_{\perp}^2 D_T$$

so w. t. regime of greater relevance

- Infrared behavior
- Correlations? (with Mingyun Cao)
 - are \tilde{b} , turbulence uncorrelated ?
 - <u>No</u> \rightarrow interaction develops $\langle \tilde{b}\tilde{\phi} \rangle \neq 0$
 - ala' Kadomtsev Pogutse, impose $\nabla \cdot \vec{J} = 0$ to all orders
 - novel small scale convection cell, related to \tilde{b} structure

Ongoing ...